0.	P.Code: 16IT620 R16 H.T.No.			
Tir	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS) B.Tech IV Year II Semester Supplementary Examinations Ma CRYPTO CURRENCY & BLOCKCHAIN TECHNOLOG (Computer Science & Information Technology) me: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	y-2025 GY		cks: 60
	UNIT-I			
1	a Explain about Byzantine General Problem.	CO1	L2	6M
	b Explain about Byzantine Fault Tolerance.	C01		6M
	OR	001	De	UNI
2	Explain Hadoop Distributed File System.	CO 1	L2	12M
	UNIT-II			
3	Explain about need of Blockchain.	CO2	L2	12M
	OR	002		12111
4	What are the different types of Blockchains?	CO2	L3	12M
	UNIT-III	001	15	12111
5	Explain Sybil attack with examples.	CO3	L3	1014
	OR	CUS	LS	12M
6	a How the Bitcoin network prevents sybil attack?	CO3	L4	6M
	b What are the ways to prevent sybil attack?	CO3	L4 L3	6M
	UNIT-IV		20	U.VI
7	a What are the attacks in cryptocurrency?	CO4	L2	6M
	b Write a short notes on sidechain and namecoin.		L2 L2	6M
	OR	004		UNI
8	Write in detail about GHOST.	CO4	L4	12M
	UNIT-V		21	
9	Explain about roots of Bitcoin.	C05	L3	1014
	OR	003	ЦЭ	12M
0	Explain Black Market and Global Economy in detail.	CO5	L3	12M
	*** END ***	000	ЦĴ	⊥≝⊥¥⊥

CO2

L2

10M

	DISTRIBUTED COMPUTING			
	(Computer Science & Information Technology)	Max. Marks: 60 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-I System. What are the advantages of distributed OR t LAN and WAN technologies UNIT-II assing? How Message Passing Approach does is CO1 LUNIT-II to an organize of distributed OR to an organize of distributed UNIT-II assing? How Message Passing Approach does is CO1 LUNIT-III to an organize of distributed systems. Image: Constructing a DFS spanning tree with a construction and Java RMI. OR t RMI Implementation and Java RMI. OR t Deadlocks in Distributed systems. CO2 LO3 Load balancing approach and Load sharing CO3 LO3 LO3 LO3 LO4 LO3 LO3 LO4 LO4 LO3 LO3 LO4 LO3 LO4 LO4 LO3 LO4 L		
me:	3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mari	cs: 60
	UNIT-I			
	Define Distributed System. What are the advantages of distributed	CO 1	L1	10M
	systems?			
	OR			
	Discuss in detail about LAN and WAN technologies	CO 6	L6	10M
	UNIT-II			
	What is Message Passing? How Message Passing Approach does is	CO 1	L1	10M
	differ from Shared memory approach.			
	OR			
	Explain in detail about Constructing a DFS spanning tree with a	CO2	L2	10M
	specified root.			
	UNIT-III			
	Explain in detail about RMI Implementation and Java RMI.	CO2	L2	10M
	OR			
	Discuss in detail about Deadlocks in Distributed systems.	CO6	L6	10M
	UNIT-IV			
	Distinguish between Load balancing approach and Load sharing	CO 4	L4	10M
	approach.			
	OR			
	Explain about threads and fault tolerance.	CO2	L2	10M
	UNIT-V			
	Discuss in detail about Naming and its Features.	CO 6	L6	10M
	OR			

Tin

1

- 2 **D6** L6 **10M**
- 3 **D1** L1 10M
- 4 D2 L2 10M

5	Explain in detail about RMI Implementation and Java RMI.	CO2	L2	10M
	OR			
6	Discuss in detail about Deadlocks in Distributed systems.	CO6	L6	10M
	UNIT-IV			
7	Distinguish between Load balancing approach and Load sharing	CO 4	L4	10M
	approach.			
	OR			
8	Explain about threads and fault tolerance.	CO2	L2	10M
	UNIT-V			
9	Discuss in detail about Naming and its Features.	CO6	L6	10M

Explain about DNS in detail. 10

*** END ***

O.P.Code: 16IT618

R16

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech IV Year II Semester Supplementary Examinations May-2025

H.T.No.

О.Р.	Code: 16IT606 R16 H.T.No.
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech III Year II Semester Supplementary Examinations May-2025
Time	: 3 Hours (Computer Science & Information Technology) (Answer all Five Units 5 x 12 = 60 Marks) (Max. Marks: 60
	UNIT-I
1	Discuss in brief about history of computer animation. CO1 L2 12M
2	OR What is Display pipe line? Explain. CO1 L1 12M
3	UNIT-II
3	What are Key frame systems? Explain. CO2 L2 12M OR
4	Discuss the following CO2 L2 12M a) Computer Arc length
	b) Interpolating Quaternions
	UNIT-III
5	Explain in detail about 3 D shape interpolation. CO3 L2 12M
6	OR How to manipulate motion capture data? Explain. CO3 L1 12M
7	UNIT-IVWhat is Reaching and Grasping? Explain.CO4L112M
8	OR Describe about Lip-sync function. CO4 L2 12M
9	UNIT-V Explain in detail about modeling intelligent behavior. CO5 L2 12M
	OR
10	Discuss about the following CO5 L2 12M
	a) Modeling individuality
	b) Autonomous behavior
	*** END ***

O.P.Code: 16CS524 R16 H.T.No.			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOI	LOGY:: I	UTT	UR
(AUTONOMOUS)			
B.Tech III Year II Semester Supplementary Examinations M COMPILER DESIGN	ay-2025		
(Common to CSIT & CSE)			
fime: 3 Hours	Max. Ma	arks:	60
(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1 a How many phases are there in a compiler? Explain each phase in detail	CO1	L3	6N
b Describe the role of lexical analysis in compiler design.	CO1	L4	6N
OR			
2 a Explain Input Buffering with simple examples.	CO1	L2	6N
b How to design the compiler by using the source program	m CO1	L3	6N
position:=intial+rate*60.			
3 a Explain about Left factoring and Left Recursion with an examples	~~~		
 3 a Explain about Left factoring and Left Recursion with an examples. b Construct Predictive Parse Table for the grammar E->E+T/T 	CO2	L4	6N
T > T*F/F,F->(E) id and parse the string id+id*id.	Г, СО2	L2	6N
OR			
4 a Consider the grammar S->xABC	CO2	L3	6N
A->a bbD	001	20	01,
B->a e			
C->b ε			
$D \rightarrow c \epsilon$			
Construct predictive parsing table for the given grammar. b Explain the Ambiguous grammar.	CO3	т о	0
UNIT-III	CO2	L2	6N
5 a Explain syntax directed definition with simple examples.	CO2	тa	
b Describe the evaluation order of SDT with an example.	CO3 CO3	L2 L4	6N 6M
OR	COJ	1.4	UIVI
6 a Explain the Type Checking with suitable examples.	CO3	L2	6M
b Write down the translation procedure for control statement.	CO3	L3	6M
UNIT-IV			
7 a Draw the format of Activation Record in stack allocation and explain	n CO4	L4	6M
each field in it.			
b Explain theStorage Organization with simple examples.	CO4	L2	6M
OR 8 a Distinguish between static scope and dynamic scope Briefly explain	~ ~ .	_	
8 a Distinguish between static scope and dynamic scope. Briefly explain access to non-local Names in static scope.	CO4	L3	6M
b Explain the Non Block Structured Languages.	CO 4	1.2	<u>CN</u>
UNIT-V	CU4	L2	6M
9 a Explain the simple code generator and generate target code sequence for	CO5	T 4	<u>AM</u>
the following statement $d:=(a-b)+(a-c)+(a-c)$.	COS	L4	6M
b Discuss the Role of peephole optimization in compilation process.	CO5	L3	6M
OR		~~~	
10 a List and explain the Issues in the design of a code generator.	CO5	L3	6M
b Explain the target machine architecture.	CO5	L2	6M
*** END ***			

Page 1 of 1

0	. P. (Code: 16 T601 R16 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOL (AUTONOMOUS)	OGY:: PUT	TUR	
		B.Techll Year II Semester Supplementary Examinations	May-2025		
		FUNDAMENTALS OF OPERATING SYSTEM	S		
Time	e: 3	(Computer Science & Information Technology) B Hours	More Mr.		CO
		(Answer all Five Units $5 \times 12 = 60$ Marks)	Max. Ma	ILKS:	60
		UNIT-I			
1		Explain Inter Process Communication(IPC).	CO1	L2	6M
	b	Justify Message Passing And Shared Memory.	CO1	L5	6M
•		OR			
2		Define Process State Diagram.	CO1	L1	6M
	D	Explain Process Scheduling.	CO1	L2	6M
		UNIT-II			
3		Discuss Critical section problem.	CO2	L2	6M
	b	Demonstrate critical problem solution.	CO2	L2	6M
4		OR			
4		Write about Implementation of semaphore.	CO2	L1	6M
	D	What is semaphore?	CO2	L1	6M
_		UNIT-III			
5		Give example for FIFO page replacement.	CO3	L1	6M
	b	Illustrate Optimal Page replacement example.	CO3	L3	6M
6		OR What is Thread is a 2			
6	a h	What is Thrashing?	CO3	L1	4M
	U	Discuss cause of thrashing and working set model.	CO3	L2	8M
-		UNIT-IV			
7	-	Write short notes on Disk Structure.	CO4	L1	6M
	b	Write short notes on Disk Attachment.	CO4	L1	6M
8	0	OR Write notes on File system mounting.	a a i	~ .	
0		Brief about File sharing.	CO4	L1	6M
	U	UNIT-V	CO4	L1	6M
9	a	Explain I/O hardware.	CO #	* •	~ ~
		Explain application I/O interface.	CO5	L2	6M
	U	OR	CO5	L2	6M
10	я	Explain kernel I/O subsystem.	COF	1.2	(1) #
10		Explain security problem.	CO5	L2	6M
	~	*** END ***	CO5	L2	6M

0.P.Code: 16CS509 R16 H.T.No.			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PUT	TUR	
(AUTONOMOUS)			
B.Tech. II Year II Semester Supplementary Examinations Ma OBJET ORIENTED PROGRAMMING	ay-2025		
(Common to CSE & CSIT)			
	Max. Ma	arks:	60
(Answer all Five Units $5 \times 12 = 60$ Marks)			
UNIT-I			
1 a Explain History and Evolution of Java.	CO1	L4	6
b What is a Data Type? How to declare variable in Java. Write the Rules.	CO1	L3	6
OR	~~ 1		
2 a Explain about the Iteration Statements with an example.	CO1	L4	6
b Write a Java program to use Bit-wise operators.	CO1	L2	6
UNIT-II			
3 a What is mean by OOP? Explain OOP Concepts.	CO2	L3	6
b Discuss about the static, final keywords with an example.	CO2	L2	6
OR			
4 a Explain about the Dynamic Method Dispath in Java with example	e CO2	L4	6
program.	COA		
b What is a package? How to create user defined package in java with example.	n CO2	L2	6
UNIT-III			
5 a What is an Exception? What are the Exception types? Explain.	CO3	L3	6
b Explain about Nested try statements with an example.	CO3	L2	6
OR			
6 a What is Multithreading? What are the ways to create multiple threads in	CO3	L4	6
java.			
b Explain about Thread Life Cycle.	CO3	L2	6
UNIT-IV			
7 a What is an Applet? Explain life cycle of an applet.	CO4	L3	6
b Explain about Delegation Event Model in Event Handling with example	CO4	L2	6
OR			
8 a Difference between AWT and Swings.	CO 4	L4	6
b Write a java swing program to find the sum of two numbers.	CO 4	L2	6
UNIT-V			
9 a Explain java networking? Explain the architecture of networking in java	CO5	L3	6
b Discuss about java.sql package with an example.	CO5	L2	6
OR			
10 Write a java program to read and display data from database.	CO5	L4	12
*** END ***			

 \bigcirc

0	D.P.Code: 16CS503 R16 H.T.No.							
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR							
	(AUTONOMOUS)							
	B.Tech I Year II Semester Supplementary Examinations Ma DATA STRUCTURES THROUGH C	y-2025						
	(Common to CSE & CSIT)							
Ti	me: 3 Hours	Max	. Mar	ks: 60				
	(Answer all Five Units $5 \times 12 = 60$ Marks)							
	UNIT-I							
1	a Write a detailed note on	CO1	L2	6 M				
	(i) Static representation of Single Linked List.							
	(ii) Dynamic representation of Single Linked List.							
	b Write short notes on the following concepts.	CO1	L2	6 M				
	OR							
2	Discuss all types of Insertion operations on a S.L.L with algorithms.	CO1	L3	12 M				
	UNIT-II							
3	Explain the Tower of Hanoi problem containing 3 discs and write the	CO2	L3	12 M				
	algorithm to solve it.							
	OR							
4	Define Circular Queue. How to insert and delete a node into and from it.	CO2	L3	12 M				
	Write algorithms for them.							
	UNIT-III							
5	Discuss about traversal operation on a Binary search tree write the	CO3	L3	12 M				
	algorithms for them.							
	OR							
6	How to do Topological Sorting on a directed acyclic graph, explain with	CO3	L3	12 M				
	an example?							
	UNIT-IV							
7	Discuss the following Sorting techniques with example	CO 4	L3	12 M				
	i) Straight Insertion Sort.							
	ii) List Insertion Sort.							
	OR							
8	Write a detailed writes on sorting by Merging.	CO4	L3	12M				
	UNIT-V							
9	What is Hash table and explain any two Hash functions with an	CO5	L3	12M				
	example?							
	OR							
10	Write and explain the algorithm for Linear search using linked list.	CO5	L3	12 M				
	*** END ***							

 \overline{k}

0.	O.P.Code: 16CS510 R16 H.T.No.						
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR						
		(AUTONOMOUS)					
		B.Tech. II Year II Semester Supplementary Examinations May COMPUTER ORGANIZATION	/-2025				
(T) *		(Common to CSIT & CSE)					
T 11	me	: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Marl	ks: 60		
		UNIT-I					
1	a	What is Assembly Language and Write few Assembly Language	CO1	L3	6M		
		Instructions.					
	b	How the Basic I/O Operations work, explain in detail?	CO1	L2	6M		
		OR					
2		Write in detail about Addressing Modes and its types.	CO1	L3	12M		
2		UNIT-II	COA		1075		
3		Explain the logic behind carry - look ahead addition with its circuit diagram and High level generate and propagate function circuit diagram.	CO2	L5	12M		
		OR					
4		Draw the H/W Flowchart and H/W Algorithm for Multiplication for	CO2	L1	12M		
		signed numbers (Booth Multiplication) with a suitable example.					
		UNIT-III					
5		Explain about the overall arithmetic circuit that performs all kinds of	CO3	L2	12M		
		AMO with a neat diagram.					
6		OR Write about Bus transfer with neat diagram.	CO2	т э			
U			CO3 CO3	L3 L3	6M 6M		
	~	UNIT-IV	000	10	UIVE		
7	a	Explain about Memory Hierarchy.	CO 4	L2	6M		
		Explain about Memory Management Requirements.	CO 4	L5	6M		
		OR					
8		What is Virtual Memory? Discuss how paging helps in implementing	CO4	L6	12M		
		virtual memory.					
9		Define perallel processing? How one can achieve perallel processing	CO5	т 1			
7	a	Define parallel processing? How one can achieve parallel processing with single CPU.	005	L1	6M		
	b	Explain about characteristics of Multiprocessor.	CO5	L2	6M		
		OR					
10		What is DMA? Draw the block diagram for DMA controller and explain	CO5	L1	12M		
		about DMA transfer in a computer.					
		*** END ***					

 $(\hat{ })$

0

(é)

0.	.Р.	Code: 16ME338 R16 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PU]	TUR	
		(AUTONOMOUS)			
		B.Tech IV Year II Semester Supplementary Examinations Ma	y-2025		
		ADVANCED WELDING PROCESSES (Mechanical Engineering)			
Tiı	me	: 3 Hours	Max.	Mar	ks: 6
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	What are the gas welding techniques?	CO1	L1	6N
	b	Give the applications of gas welding.	CO1	L1	6N
		OR			
2	a	Classify the arc welding consumables.	CO1	L1	6N
	b	What are the main purposes of electrode coatings?	CO1	L1	6N
		UNIT-II			
3	a	Explain the addition of filler metal in TIG welding	CO2	L2	6N
	b			L2	6N
		application?			
		OR			
4	a	List the different forces that affect the mode of metal transfer in arc	CO2	L3	6N
		welding and describe their role in brief.			
	b	Classify the modes of metal transfer in arc welding and describe their	CO2	L1	6N
		characteristics and use in position.			
		UNIT-III			
5	a	Discuss the output V-I characteristics of welding generator and use of	CO3	L2	6N
		pulsed currents.			
	b	If the maximum output current from a welding power source of 100%	CO3	L4	6 M
		duty cycle is 350A, determine the rated current at 75% duty cycle.			
		OR			
6	a	With neat sketch explain joint designs in friction welding.	CO4	L2	6M
	b	Give the applications of friction welding process.	CO4	L3	6M
		UNIT-IV			
7		What are the application of explosive welding and area of application?	CO5	L1	6M
	b	Give the advantages and disadvantages of explosive welding.	CO5	L2	6M
-		OR	-		
8		Give the advantages and disadvantages of adhesive bonding.	CO5	L2	6M
	b	What are the applications of adhesive bonding?	CO5	L1	6M
		UNIT-V			
9		Enumerate different soldering methods and describe in detail any two of	CO6	L2	12M
		them.			
		OR			
		Describe the LASER beam welding process with neat sketch.	CO6	L2	6M
	b	Discuss the process variables in LASER beam welding.	CO6	L2	6M
		*** END ***			

 \bigcirc

0

(e)

O.P	Code: 16ME333 R16 H.T.No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS) B.Tech IV Year II Semester Supplementary Examinations Ma		TUR	
Tim	POWER PLANT ENGINEERING (Mechanical Engineering) (Answer all Five Units 5 x 12 = 60 Marks)	-	Mar	ks: 60
	UNIT-I			
1	Explain the layout of steam power plant with neat sketch.	CO 1	L2	12M
	OR	601		1075
2	Explain the layout of gas turbine power plant.	CO 1	L5	12M
3	Organize types of equipment used for transferring coal.	CO2	L6	12M
Ũ	OR	001	20	
4	Write briefly about cyclone furnace, design and construction.	CO2	L4	12M
	UNIT-III			
5	Explain the working of a diesel power plant with a neat sketch.	CO3	L2	12M
6	a Discuss about fuel system and lubrication system of diesel engine.	CO3	L3	6M
U	b Compare a closed cycle gas turbines with open cycle gas turbine.	CO3	LJ L1	6M
	UNIT-IV			
7	Discuss a pumped storage power plant with neat diagram.	CO 4	L2	12M
	OR			
8	Explain governing mechanism of turbines with a neat sketch.	CO4	L5	12M
0	UNIT-V	005	T 4	103.0
9	Discuss true chain reaction. OR	C05	L4	12M
10	Explain with a neat diagram Pressurized water reactor.	CO5	L2	12M
	*** END ***			

0

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	:: PUT	TUR	
		B.Tech II Year II Semester Supplementary Examinations May-	-2025		
		ENGINEERING THERMODYNAMICS			
Tin	ne:	(Mechanical Engineering) 3 Hours	May	Marl	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	max	man	13. 00
		UNIT-I			
1	a	Discuss the macroscopic and microscopic point of view of	CO1	L 1	6M
		thermodynamics.			
	b	Define and explain Zeroth Law of Thermodynamics. OR	CO1	L2	6M
2		What is meant by thermodynamics equilibrium? Explains its types	CO1	L4	12M
		briefly.	001	21	
		UNIT-II			
3	a	Derive Steady Flow Energy Equation for Nozzle.	CO2	L5	6M
	b	During a cycle consisting of four processes, the heat transfer are as	CO2	L1	6M
		following. $Q1 = +60KJ$, $Q2 = -40KJ$, $Q3 = 15KJ$, and $Q4 = -20KJ$,			
		Determine the net work done by the system. OR			
4	9	What are the different modes in which energy is stored in a system.	CO3	L2	6M
- T		Explain the Specific heat capacities (Cp & Cv).	CO3	L2 L3	6M
	~		000		
5	a	State and explain second law of thermodynamics	CO3	L2	6M
		An inventor claims to have developed an engine that takes in 105 MJ at	CO3		6M
		a temperature of 400 K, rejects 42 MJ at a temperature of 200 K, and			
		delivers 15 kWh of mechanical work. Would you advise investing			
		money to put this engine in the market?			
6		OR An adiabatic vessel contain 2 kg of water at 25 0C. By peddle wheel	CO4	τ5	12M
U		work transfer the temperature of water is increase to 30 0C. If the	04	LJ	12111
		specific heat of water is assumed constant at 4.187 kJ/kgK, Find entropy			
		change of universe.			
		UNIT-IV			
7	a	Write Vander walls equation of state. How does it differ from the ideal	CO4	L1	6M
		gas equation of state.	~~ .	~ ~	
	b	What is the gas equation of ideal gas? OR	CO 4	L2	6M
8		One kg of air in a closed system, initially at 5°C and occupying $0.3m^3$	CO4	τ3	12M
0		volume, undergoes a constant pressure heating process to 100°C. There	0.04	L3	12111
		is no work other than pdv work. Find (i) the work done during the			
		process, (ii) the heat transferred, and (iii) the entropy change of the gas.			
		UNIT-V			
9		Derive the Maxwell's equations.	CO5	L4	12M
10		OR	CO-	т	1035
10		Derive an expression for the thermal efficiency of Diesel cycle and draw	CO5	L5	12M
		P-V & T-S diagrams.			

H.T.No.

R16

O.P.Code: 16ME307

1.1

*** END ***

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) B.Tech. IV Year II Semester Supplementary Examinations May ENTREPRENEURSHIP DEVELOPMENT (Computer Science & Information Technology)	
Tin	1e: 3	3 Hours M	ax. Ma
		(Answer all Five Units $5 \times 12 = 60$ Marks)	
		UNIT-I	
1	l a	Entrepreneur is successful because of his ability to think differently.	CO 1
		Why or why not?	
	b	Define the Functions of an entrepreneur.	CO1
		OR	
2	2 a	Analyze the Rural Entrepreneurship? explain in detail.	CO1
	b	Write a notes on Corporate entrepreneurship.	CO1
		UNIT-II	
• 3	s a	How are MSME helpful to develop Economic Development.	CO2
	b	What is the Importance of small business.	CO2
		OR	
4	ļ	Summarize about Licensing and Leasing and Franchising.	CO2 =
		UNIT-III	
5	a	Construct the concept of invention.	CO3
	b	Find the advantages of Innovation in Business.	CO3
		OR	
6	a	Write short notes on Copy Rights and Patents.	CO3
	b	Explain about E-commerce in business.	CO3

7 a Outline the EDP and discuss its advantages.

b Examine about consultancy organization.

a List out the successful women entrepreneurs.

8

PUTTUR

		entrepreneur explan.			
		UNIT-V			
9	a	Determine the stages of project management process.	CO5	L2	6M
	b	Explain the role of project planning in entrepreneurship.	CO5	L1	6M
		OR			
10	a	Clarify project planning is related to the entrepreneurial development.	CO5	L3	6M
	b	How can a feasible about Economic and Industry analysis.	CO5	L3	6M

b How are entrepreneurship development programs helpful to an CO4

UNIT-IV

OR

*** END ***

O.P.Code: 16MB751

R16

H.T.No.

x. Marks: 60

L1

L2

L4

L2

L2

L1

L3

L5

L4

L2

L1

L2

L4

L2

L3

CO4

CO4

CO4

6M

6M

6M

6M

6M

6M

12M

6M

6M

6M

6M

6M

6M

6M

6M

(AUTONOMOUS) **B.Tech | Year || Semester Supplementary Examinations May-2025 ENGINEERING GRAPHICS** (Common to CE, EEE, ME & AGE) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Draw an ellipse having major axis is equal to 100 mm and the minor CO1 1 L1 **6M** axis is equal to 70 mm. Use the concentric circle method **b** Draw the involute of a square of side 25 mm **L1 CO1 6M** OR 2 A point P is 30 mm and 50 mm respectively from two straight lines **CO1** L2 **12M** which are at right angles to each other. Draw the rectangular hyperbola from p within 10 mm distance from each line. UNIT-II 3 Draw the projections of the following points, keeping the distance CO1 **L2 12M** between the projectors as 25mm on the same reference lines: A – 20mm above HP and 30mm in front of VP B – 20mm above HP and 30mm behind VP C – 20mm below HP and 30mm behind VP D – 20mm below HP and 30mm in front of VP E – On HP and 30mm in front of VP F – On VP and 20mm above HP G – Lying on both HP and VP OR A line CD, 75mm long is inclined at an angle of 45° to HP and 30° to **CO1 L3** 4 **12M** VP. The point P is 15mm above HP and 20mm in front of VP. Draw the projections of the line. UNIT-III 5 An equilateral triangular plane ABC of side 40mm, has its plane parallel **CO2 12M** L2 to VP and 20mm away from it. Draw the projections of the plane when one of its sides is (i) Parallel to HP and (ii) Inclined to HP at an angle of 45⁰. OR 6 A square pyramid, base 40 mm side and axis 70 mm long, is freely CO2 **12M L3** suspended from one of the corners of its base. Draw its projections, when the axis as a vertical plane makes an angle of 45^0 with the VP. **UNIT-IV** A hexagonal prism of side of base 30 mm and length of axis 75 mm, is 7 **CO2 L3 12M** resting on its base on HP. It is cut by a section plane inclined 35° to HP and passing through top corner. Draw the front and sectional top views

R16

O.P.Code: 16ME302

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

of the solid and true shape of the section.

A pentagonal pyramid, side of base 30 mm and height 52 mm, stands CO2 L3 12M with its base on HP and an edge of the base is parallel to VP. It is cut by a plane perpendicular to VP, inclined at 40° to HP and passing through a point on the axis, 32 mm above the base. Draw the development of the lateral surface of the truncated pyramid.

UNIT-V

9 Draw the isometric view of a cylinder of base diameter 50mm and axis CO3 L2 12M 60 mm the axis of the cylinder is perpendicular to the VP.

OR

10 Draw three views of the blocks shown pictorially in figure according to CO3 L4 12M first angle projection.

5	D	Coder	16ME308 R16	H.T.No.					
Ľ	· r ·	coue:	16ME308 R16						
		SIDI	HARTH INSTITUTE OF ENGIN	EERING & '	TECH	NOLOG	Y:: PU	TUR	
			(AUTONO	OMOUS)					
			B.Tech. II Year II Semester Supp DYNAMICS O			ions Ma	ay-2025		
				al Engineering)					
Ti	me	e: 3 Ho		0			Max	. Mar	ks: 6
				Jnits 5 x 12 = JNIT-I	• 60 Mar	·ks)			
1		a)	Explain following terms				CO1	L1	12 N
		1 \	(i) Piston Effort (ii) Crank effort						
			Define the Gyroscopic torque						
		c)	Define Co efficient of fluctuation of	•••					
			Define Co efficient of fluctuation of	-	~~~~				
			Explain the Gyroscopic couple on re	OR					
2	a		coefficient of fluctuation of speed	and coefficier	nt of flu	ctuation	CO1	L2	6N
		of ener							
	b		lius of gyration of a fly wheel is 1m			_		L3	6N
			o exceed 1% of the mean speed of th						
			el is 3340kg and the steam develops		-				
			kimum fluctuation of energy (ii).	Coefficient of	f fluctu	ation of			
		energy		NIKES TH					
•		-)	L	NIT-II					
3		a)	How is rolling friction different from	n sliding fricti	ion?		CO2	L2	12N
		b)	Write different types bearings						
		c) d)	Distinguish between a brake and a d						
			Write the principle of Dynamometer						
		6)	Define centrifugal clutch	OD					
4	9	Descril	e with neat sketch the lope brake dy	OR			CON	т э	
т	a h		the expression for Uniform Pressure		0 11/000		CO2 CO2	L2	6M
	~	of the l			ii wear a	any one	02	L3	6M
				III-III					
5		a)	How the governors are classified?				CO3	L2	12N
		b)	What is meant by Sensitiveness of go	overnors?					
		c)	Distinguish between a Governor and						
		d)	What is the effect of friction on the g	governor?					
		e)	What is meant by isochronous condit	tion in Govern	nors?				
				OR					
6		The ler	gth of the upper and lower arms of a	n porter govern	nor are	200mm	CO3	L3	12M
		and 25	Imm respectively. Both the arms	are pivoted of	on the	axis of			
			The central load is 150N, the weigh						
			ion of the sleeve together with the						
			equivalent to a force of 30N at						
		inclinat	ons of the upper arms to the verti	ical are 30° a	and 40°	taking			

friction in to account. Find the range of speed of the governor.

29° 65' 75

0

Page 1 of 2

×

UNIT-IV

A shaft is rotating at a uniform angular speed. Four masses M1, M2, 7 **CO4** L3 12M M3and M4 of magnitudes 300kg, 450kg, 360kg, 390kg respectively are attached rigidly to the shaft. The masses are rotating in the same plane. The corresponding radii of rotation are 200mm, 150mm, 250mm and 300mm respectively. The angle made by these masses with horizontal are 0°.45°, 120° and 255° respectively. Find (i) the magnitude of balancing mass (ii) the position of balancing mass if its radius of rotation is 200mm. OR 8 a) What is Balancing of rotating masses? **CO4** L2 **12M** b) Why rotating masses are to be dynamically balanced? c) Define direct and reverse cranks. d) What are the different types of balancing machines? e) Define Swaying couple? UNIT-V a Deduce the expression for the free longitudinal vibration in terms of CO5 9 **L2 6M** spring stiffness, its inertia effect and suspended mass. b A spring mass system has spring stiffness 's'N/m and has a mass of CO5 L3 **6M** 'm'kg.It has the natural frequency of vibration as 12Hz.An extra 2kg mass is coupled to 'm' and natural frequency reduces by 2Hz.Find the value of 's' and 'm'. OR 10 a) What are the types of Vibrations? **CO5** L2 **12M** b) What are the cause of critical speed? Or why critical speed encountered? c) Distinguish between a traverse and torsional vibration. d) Distinguished the critical damping and large damping e) Define resonance. *** END ***

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May-2025 **PROBABILITY & STATISTICS**

(Common to CE, ME, AGE, CSE, CSIT, EEE)

Max. Marks: 60

Time: 3 Hours

(Answer all Five Units $5 \ge 12 = 60$ Marks) **UNIT-I**

- Two cards are selected at random from 10 cards numbered 1 to 10. Find L1 **6M CO1** 1 a the probability that the sum is even if (i) The two cards are drawn together. (ii) The two cards drawn one after other with replacement.
 - b
 - **L2 6M CO1** Determine (i) $P(B_A)$ (ii) $P(A_B^c)$ if A and B are events with $P(A) = \frac{1}{3}$, P(B) $B\big)=\frac{1}{2}.$

$$P=-\frac{1}{4}$$
, $P(A\cup A)$

OR

L3 12M variable Х is **CO1** function of random а Probability density 2 $f(x) = \begin{cases} \frac{1}{2}\sin x, \text{ for } 0 \le x \le \pi\\ 0, \text{ elsewhere} \end{cases}$. Find the mean, mode and median of the

distribution and also find the probability between 0 and $\frac{\pi}{2}$.

UNIT-II

CO2 L2 **6M** Derive mean and variance of Binomial distribution. 3 a 20% of items produced from a factory are defective. Find the **CO2** L3 **6M** b probability that in a sample of 5 chosen at random (i) one is defective

(ii)
$$p(1 < x < 4)$$
.

OR

In a sample of 1000 cases, the mean of certain test is 14 and standard deviation CO2 **12M** L1 4 is 2.5.Assuming the distribution to be normal find (i) How many students score between 12 and 15. (ii) How many students score above 18? (iii) How many students score below 18?

UNIT-III

- The means of two large samples of sizes 1000 and 2000 members are **CO3** L1**6M** 5 a 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches. **L2 6M CO3**
 - Experience had shown that 20% of a manufactured product is of the top b quality. In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level.

OR

Two random samples reveal the following results: 6 F101/1

Sample	Size	Sample	Sum of squares of deviations from the
-		Mean	mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

12M

CO3

L3

UNIT-IV Define ANOVA.Describe briefly the technique of ANOVA for one-way 7 **CO4 L3 12M** classification. OR 8 a Define R.B.D and L.S.D. **CO4** L1 **6M** Describe briefly the technique of ANOVA for Two-way classification. b **CO4 L2 6M** UNIT-V The following data shows the values of sample mean and range for 10 samples for 9 **CO5** L1**12M** size 6 each. Calculate the central limits for mean chart and R- chart and draw the control charts and comment on the state of control. [10M] Sample no. 1 2 3 5 7 9 10 4 6 8 Mean (x)43 49 37 44 45 37 51 46 43 47 Range (R) 5 6 5 7 7 8 4 6 4 6 OR **6M**

10 aWrite the constructions of mean, range, p and c -charts.CO5L2bWrite the causes of variations.CO5L3

*** END ***

6M

0.	р.(Code: 16HS611 R16 H.T.No.				
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year II Semester Supplementary Examinations May-2025						
		ENGINEERING MATHEMATICS-II (Common to all Branches)				
Ti	ne	: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Marl	cs: 60	
		UNIT-I			e,	
1	a		CO1	L3	6M	
		Reduce the following matrix $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ into Echelon				
		Reduce the following matrix $A = \begin{bmatrix} 8 & 4 & 7 & 13 \end{bmatrix}$ into Echelon				
	÷					
	h	form and hence find the rank. Investigate for what values of λ and μ so that the equations	CO1	L2	6M	
	IJ	$2x+3y+5z=9$; $7x+3y-2z=8$; $2x+3y+\lambda z = \mu$ have (i) unique	COI		UIVI	
		solution, (ii) infinite solutions (iii) no solution				
2		OR	CO1	L5	12M	
2		Varify Condex Hamilton theorem find 4^{-1} and 4^{4} of $4 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$	COI	L3	12111	
		Verify Cayley-Hamilton theorem, find A^{-1} and A^{4} of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$				
					47	
		UNIT-II				
3	a	Find div F where $F = grad(x^3 + y^3 + z^3 - 3xyz)$	CO2	L3	6M	
	b	Prove that $div(r^n \mathbf{R}) = (n+3)r^n$. Find n if it is solenoidal.	CO2	L3	6M	
	22	OR				
4		Verify divergence theorem for $F = x^2i + y^2j + z^2k$ over the cube formed by the planes $x = 0, x = a, y = 0, y = b, z = 0, z = c$.	CO2	L5	12M	
		UNIT-III				
5		Find the Fourier series of the function $f(x) = e^{ax}$; $0 \le x \le 2\pi$	CO3	L3	6M	
	b	Find the Fourier series of the function defined by $(0, \dots, -\infty)$	CO3	L3	6M	
		$f(x) = \begin{cases} 0, & -\pi \le x < 0;\\ \sin x, & 0 \le x \le \pi; \end{cases}$				
		OR				
6	a	Find the Fourier series of the function $f(x) = x^2; -l \le x \le l$	CO3	L3	6M	
			000		(3 F	
	b	Find the half range cosine series for the function	CO3	L3	6M	
	1	$f(x) = x; \ 0 \le x \le 2$				
		UNIT-IV				
7	a	Find the Fourier transform of $f(x) = \begin{cases} UNIT-IV \\ a^2 - x^2, & x \le a \\ 0, & x > a \end{cases}$	CO 4	L3	12M	
		m all t taget a		11		

Hence deduce that $\int_0^\infty \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}$ OR

00

a Find the Fourier cosine transform of $e^{-ax} \cos x$; a > 0**CO4** ·L3 **6M** 8 Find the Fourier cosine transform of $f(x) = \begin{cases} x, \text{ for } 0 < x < 1 \\ 2 - x, \text{ for } 1 < x < 2 \\ 0, \text{ for } x > 2 \end{cases}$ **CO4 L3 6M** b

a Form the PDE by eliminating the arbitrary functions from CO5 **L6 6M** 9 $f(x+y+z, x^2+y^2+z^2) = 0$

CO5 L3 6M Using the method of separation of variable, solve $\frac{\partial u}{\partial r} = 2 \frac{\partial u}{\partial t} + u$, b where $u(x, 0) = 6e^{-3x}$.

OR

A homogeneous rod of conducting material of length 100 cm has CO5 **12M L3** 10 its ends kept at zero temperature and the temperature initially is

 $u(x,0) = \begin{cases} x & ; 0 \le x \le 50 \\ 100 - x & ; 50 \le x \le 100 \end{cases}$ Find the temperature u(x,t) at

any time.

*** END ***